
Fahim Tahmid Chowdhury*, Yue Zhu*, Todd Heer+, Saul Paredes*,
Adam Moody+, Robin Goldstone+, Kathryn Mohror+, Weikuan Yu*

Florida State University*
Lawrence Livermore National Laboratory+

I/O Characterization and Performance 
Evaluation of BeeGFS for Deep Learning

48th International Conference on Parallel Processing (ICPP 2019), Kyoto, Japan

8/12/19



Outline

• Overview
• BeeGFS Introduction
• Deep Learning I/O Pattern
• Experimental Results and Key Observations
• Conclusion and Future Works

2 ICPP 2019



Outline

ØOverview
• BeeGFS Introduction
• Deep Learning I/O Pattern
• Experimental Results and Key Observations
• Conclusion and Future Works

3 ICPP 2019



Motivations

• BeeGFS is an emerging Parallel File System (PFS) that is 
interesting for a systematic performance analysis

• Deep Learning (DL) applications are very common HPC 
workloads on modern supercomputers

• Most of the time DL applications read files of a dataset 
kept on PFS during training phase

• Our research aims at evaluating BeeGFS focusing on DL 
application workloads on HPC systems

ICPP 20194



Key Contributions

• Identify the I/O patterns posed by DL applications
• Evaluate the impact of read/write on BeeGFS
• Analyze metadata performance of BeeGFS
• Evaluate BeeGFS using DL application benchmarks

ICPP 20195



Outline

• Overview
Ø BeeGFS Introduction
• Deep Learning I/O Pattern
• Experimental Results and Key Observations
• Conclusion and Future Works

6 ICPP 2019



BeeGFS Software Architecture
• Management Server (MS)

– Tracks initial connectivity information
• Metadata Server (MDS)

– One Metadata Target per MDS
– Maintains exclusive part of 

namespace
• Object Storage Server (OSS)

– One or multiple Object Storage 
Targets (OST)

– OST is generally RAID-set with POSIX 
compliant file system

• File System Client (FSC)
– Kernel module to expose functions

ICPP 20197



Outline

• Overview
• BeeGFS Introduction
ØDeep Learning I/O Pattern
• Experimental Results and Key Observations
• Conclusion and Future Works

8 ICPP 2019



Deep Learning Frameworks

• Livermore Big Artificial Neural Network Toolkit (LBANN)
– A neural network toolkit for HPC developed at LLNL
– Dataset specific specialized input pipeline

• TensorFlow (TF) and Horovod
– TF is a machine learning development platform by Google
– Horovod helps enable HPC features in TF, Torch, etc.
– TF provides Dataset API for importing data while training

ICPP 20199



Deep Learning Applications and Datasets

• AlexNet
– 8 layer Convolutional Neural Network (CNN) for Image 

Recognition
• ResNet50
– 50 layer Deep Residual Network for Image Classification

• ImageNet
– Huge labelled image dataset with ~1.2 million images
– Average file size is ~100 K

ICPP 201910



Deep Learning I/O Challenges on PFS
LBANN ImageNet Reader TF Dataset API Input Pipeline

11 ICPP 2019

• Small I/O accesses for both LBANN and TF reported by Darshan-3.1.7
• Less data is read compared to huge metadata overhead
• No PFS caching due to randomization at each epoch



Outline

• Overview
• BeeGFS Introduction
• Deep Learning I/O Pattern
Ø Experimental Results and Key Observations
• Conclusion and Future Works

12 ICPP 2019



System Configuration

• All the experiments performed on Catalyst at LLNL
• BeeGFS setup

– 338 TB BeeGFS-7.1.2 installation on Catalyst
– 12 server hosts with QLogic Infiniband QDR interconnect
– 12 OSS each with 2 OSTs

• 1 OST: 4 HDD with ZFS RAID-Z and ZFS intent log on SSD
• Level 2 Adjustable Replacement Cache on DRAM

– 36 MDS each with 1 MDT
• 3 MDS running per server host
• 1 MDT: 4 SSD with ZFS RAID-Z formatting

ICPP 201913



Benchmarking Tools

• Interleaved-Or-Random (IOR) version 2.10.3
– File-per-process (N-N) and Single-shared-file (N-1) read/write 

with 240 GiB total file size
• MDTest-1.9.3

– File create, stat and read operations
– Shared-file, flat directory and single-depth hierarchical directory

• Deep Learning Benchmarks
– AlexNet and ResNet-50 over ImageNet on LBANN
– ImageNet reader pipeline on TF Dataset API and Horovod

ICPP 201914



Single Client Read Performance
File-per-process (N-N) Single-shared-file (N-1)

15 ICPP 2019

• N-N Read bandwidth reaches saturation point for network bandwidth
• N-1 Read bandwidth behaves differently for stripe count lower than 4



Single Client Write Performance
File-per-process (N-N) Single-shared-file (N-1)

16 ICPP 2019

• N-N write bandwidth increases with process count and saturates
• N-1 write bandwidth does not scale as good as N-N write



Scale-out Read Performance
File-per-process (N-N) Single-shared-file (N-1)

17 ICPP 2019

• N-N read bandwidth scales smoothly with increasing number of clients
• Bandwidth of N-1 read is slightly lower that of N-N read



Scale-out Write Performance
File-per-process Single-shared-file

18 ICPP 2019

• N-N write bandwidth shows good scalability
• N-1 write bandwidth is almost half of N-N write bandwidth



Multi Client Varying Transfer Sizes
Read Write

19 ICPP 2019

• Vary the transfer size for 16 clients and 8 processes per client
• N-N workloads handled better with increasing transfer size
• N-N bandwidths are better than N-1 as usual



I/O Observations

• N-N workload is almost always better than N-1
– N-N read workload is closer to actual DL training I/O
– Checkpointing and logging should avoid N-1 write

• Increasing stripe count is not always necessary
– Need to balance resource utilization and performance
– Lower striping leaves more devices available with 

reasonable performance

ICPP 201920



Multi Client Metadata Performance
Stat Read

21 ICPP 2019

Creation

• File stat performance is good for both flat and hierarchical directory structures
• Single-depth hierarchical directory structure is the best for file open and close
• File creation metadata operation can leverage hierarchical directory structure



Metadata Observations

• Hierarchical file organization is beneficial to 
metadata management in BeeGFS
– Dataset files should be arranged in hierarchical directories
– ImageNet files are arranged in single-depth subdirectories

ICPP 201922



• Read time decreases 
with increasing nodes

• Read bandwidth does 
not scale much

• Metadata overhead 
governs the overall 
throughput

23 ICPP 2019

AlexNet over ImageNet on LBANN



24 ICPP 2019

ResNet50 over ImageNet on LBANN

• AlexNet and 
ResNet50 both uses 
the same pipeline

• ImageNet dataset 
specific input pipeline 
in LBANN

• Similar trends for 
read throughput



25 ICPP 2019

ImageNet Data Reader on TF Dataset API

• Initial level tests on 
distributed 
TensorFlow

• Less data read 
compared to LBANN 
and bandwidth is low

• Metadata is a notable 
bottleneck



DL Application Benchmark Observations
• BeeGFS can reasonably handle LBANN DL I/O pattern

– Read time lessens with more clients
– Metadata overhead increases less steeply

• The directory structure of ImageNet is helpful for BeeGFS
– Single-depth hierarchical directory structure in ImageNet assists 

metadata manager
• TF offers internal optimizations for file reading

– tf.read_file through python wrapper invokes tiny file reads
• Metadata handling is a notable bottleneck in both

LBANN and TF

ICPP 201926



Outline

• Overview
• BeeGFS Introduction
• Deep Learning I/O Pattern
• Experimental Results and Key Observations
Ø Conclusion and Future Works

27 ICPP 2019



Conclusion and Future Works

• We perform microscopic data and metadata I/O 
performance evaluation of BeeGFS

• We discuss all the results and observations in the 
context of Deep Learning I/O patterns on BeeGFS

• We plan to perform more in-depth analysis on I/O 
workload by applications built atop TensorFlow

• We want to compile characterization data on more 
BeeGFS features, e.g., Storage Pool, BeeOND, etc.

ICPP 201928



Sponsors

29 ICPP 2019

This work is performed under the auspices of the U.S. Depart- ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-784219. This work is also supported in part by the 
National Science Foundation awards 1561041, 1564647, 1744336, 1763547, and 1822737.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees 
makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use 
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.



Thank you

30 ICPP 2019



Questions?

31 ICPP 2019



Backup

32 ICPP 2019



Single Client Read Performance (Contd.)
File-per-process (N-N) Single-shared-file (N-1)

33 ICPP 2019

• N-N and N-1 read behave similarly with increasing stripes
• Lower stripe count ensures cost-efficient resource utilization



Single Client Write Performance (Contd.)
File-per-process (N-N) Single-shared-file (N-1)

34 ICPP 2019

• N-N and N-1 write bandwidth both do not change much with stripe count
• Lower stripe count ensures more available storage devices


