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Motivations

• BeeGFS is an emerging Parallel File System (PFS) that is 
interesting for a systematic performance analysis

• Deep Learning (DL) applications are very common HPC 
workloads on modern supercomputers

• Most of the time DL applications read files of a dataset 
kept on PFS during training phase

• Our research aims at evaluating BeeGFS focusing on DL 
application workloads on HPC systems
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Key Contributions

• Identify the I/O patterns posed by DL applications
• Evaluate the impact of read/write on BeeGFS
• Analyze metadata performance of BeeGFS
• Evaluate BeeGFS using DL application benchmarks
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BeeGFS Software Architecture
• Management Server (MS)

– Tracks initial connectivity information
• Metadata Server (MDS)

– One Metadata Target per MDS
– Maintains exclusive part of 

namespace
• Object Storage Server (OSS)

– One or multiple Object Storage 
Targets (OST)

– OST is generally RAID-set with POSIX 
compliant file system

• File System Client (FSC)
– Kernel module to expose functions
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Deep Learning Frameworks

• Livermore Big Artificial Neural Network Toolkit (LBANN)
– A neural network toolkit for HPC developed at LLNL
– Dataset specific specialized input pipeline

• TensorFlow (TF) and Horovod
– TF is a machine learning development platform by Google
– Horovod helps enable HPC features in TF, Torch, etc.
– TF provides Dataset API for importing data while training
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Deep Learning Applications and Datasets

• AlexNet
– 8 layer Convolutional Neural Network (CNN) for Image 

Recognition
• ResNet50
– 50 layer Deep Residual Network for Image Classification

• ImageNet
– Huge labelled image dataset with ~1.2 million images
– Average file size is ~100 K
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Deep Learning I/O Challenges on PFS
LBANN ImageNet Reader TF Dataset API Input Pipeline
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• Small I/O accesses for both LBANN and TF reported by Darshan-3.1.7
• Less data is read compared to huge metadata overhead
• No PFS caching due to randomization at each epoch
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System Configuration

• All the experiments performed on Catalyst at LLNL
• BeeGFS setup

– 338 TB BeeGFS-7.1.2 installation on Catalyst
– 12 server hosts with QLogic Infiniband QDR interconnect
– 12 OSS each with 2 OSTs

• 1 OST: 4 HDD with ZFS RAID-Z and ZFS intent log on SSD
• Level 2 Adjustable Replacement Cache on DRAM

– 36 MDS each with 1 MDT
• 3 MDS running per server host
• 1 MDT: 4 SSD with ZFS RAID-Z formatting
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Benchmarking Tools

• Interleaved-Or-Random (IOR) version 2.10.3
– File-per-process (N-N) and Single-shared-file (N-1) read/write 

with 240 GiB total file size
• MDTest-1.9.3

– File create, stat and read operations
– Shared-file, flat directory and single-depth hierarchical directory

• Deep Learning Benchmarks
– AlexNet and ResNet-50 over ImageNet on LBANN
– ImageNet reader pipeline on TF Dataset API and Horovod
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Single Client Read Performance
File-per-process (N-N) Single-shared-file (N-1)
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• N-N Read bandwidth reaches saturation point for network bandwidth
• N-1 Read bandwidth behaves differently for stripe count lower than 4



Single Client Write Performance
File-per-process (N-N) Single-shared-file (N-1)
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• N-N write bandwidth increases with process count and saturates
• N-1 write bandwidth does not scale as good as N-N write



Scale-out Read Performance
File-per-process (N-N) Single-shared-file (N-1)
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• N-N read bandwidth scales smoothly with increasing number of clients
• Bandwidth of N-1 read is slightly lower that of N-N read



Scale-out Write Performance
File-per-process Single-shared-file
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• N-N write bandwidth shows good scalability
• N-1 write bandwidth is almost half of N-N write bandwidth



Multi Client Varying Transfer Sizes
Read Write
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• Vary the transfer size for 16 clients and 8 processes per client
• N-N workloads handled better with increasing transfer size
• N-N bandwidths are better than N-1 as usual



I/O Observations

• N-N workload is almost always better than N-1
– N-N read workload is closer to actual DL training I/O
– Checkpointing and logging should avoid N-1 write

• Increasing stripe count is not always necessary
– Need to balance resource utilization and performance
– Lower striping leaves more devices available with 

reasonable performance
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Multi Client Metadata Performance
Stat Read
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Creation

• File stat performance is good for both flat and hierarchical directory structures
• Single-depth hierarchical directory structure is the best for file open and close
• File creation metadata operation can leverage hierarchical directory structure



Metadata Observations

• Hierarchical file organization is beneficial to 
metadata management in BeeGFS
– Dataset files should be arranged in hierarchical directories
– ImageNet files are arranged in single-depth subdirectories

ICPP 201922



• Read time decreases 
with increasing nodes

• Read bandwidth does 
not scale much

• Metadata overhead 
governs the overall 
throughput
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AlexNet over ImageNet on LBANN
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ResNet50 over ImageNet on LBANN

• AlexNet and 
ResNet50 both uses 
the same pipeline

• ImageNet dataset 
specific input pipeline 
in LBANN

• Similar trends for 
read throughput
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ImageNet Data Reader on TF Dataset API

• Initial level tests on 
distributed 
TensorFlow

• Less data read 
compared to LBANN 
and bandwidth is low

• Metadata is a notable 
bottleneck



DL Application Benchmark Observations
• BeeGFS can reasonably handle LBANN DL I/O pattern

– Read time lessens with more clients
– Metadata overhead increases less steeply

• The directory structure of ImageNet is helpful for BeeGFS
– Single-depth hierarchical directory structure in ImageNet assists 

metadata manager
• TF offers internal optimizations for file reading

– tf.read_file through python wrapper invokes tiny file reads
• Metadata handling is a notable bottleneck in both

LBANN and TF
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Conclusion and Future Works

• We perform microscopic data and metadata I/O 
performance evaluation of BeeGFS

• We discuss all the results and observations in the 
context of Deep Learning I/O patterns on BeeGFS

• We plan to perform more in-depth analysis on I/O 
workload by applications built atop TensorFlow

• We want to compile characterization data on more 
BeeGFS features, e.g., Storage Pool, BeeOND, etc.
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Thank you
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Questions?
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Backup
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Single Client Read Performance (Contd.)
File-per-process (N-N) Single-shared-file (N-1)
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• N-N and N-1 read behave similarly with increasing stripes
• Lower stripe count ensures cost-efficient resource utilization



Single Client Write Performance (Contd.)
File-per-process (N-N) Single-shared-file (N-1)
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• N-N and N-1 write bandwidth both do not change much with stripe count
• Lower stripe count ensures more available storage devices


